Methylation, Transcription, and Rearrangements of Transposable Elements in Synthetic Allopolyploids
Author(s) -
Beery Yaakov,
Khalil Kashkush
Publication year - 2011
Publication title -
international journal of plant genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.454
H-Index - 30
eISSN - 1687-5370
pISSN - 1687-5389
DOI - 10.1155/2011/569826
Subject(s) - transposable element , biology , epigenetics , polyploid , genome , dna methylation , genetics , methylation , genome evolution , plant evolution , evolutionary biology , dna , gene expression , gene
Transposable elements (TEs) constitute over 90% of the wheat genome. It was suggested that “genomic stress” such as hybridity or polyploidy might activate transposons. Intensive investigations of various polyploid systems revealed that allopolyploidization event is associated with widespread changes in genome structure, methylation, and expression involving low- and high-copy, coding and noncoding sequences. Massive demethylation and transcriptional activation of TEs were also observed in newly formed allopolyploids. Massive proliferation, however, was reported for very limited number of TE families in various polyploidy systems. The aim of this review is to summarize the accumulated data on genetic and epigenetic dynamics of TEs, particularly in synthetic allotetraploid and allohexaploid wheat species. In addition, the underlying mechanisms and the potential biological significance of TE dynamics following allopolyploidization are discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom