z-logo
open-access-imgOpen Access
Dynamic Analysis of Cracked Octagonal Quasicrystals
Author(s) -
Wu Li,
Tian You Fan
Publication year - 2011
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2011/567489
Subject(s) - phason , quasicrystal , singularity , fracture (geology) , stress intensity factor , fracture mechanics , coupling (piping) , materials science , mechanics , geometry , physics , mathematics , composite material
We focus on the dynamic fracture problem of octagonal quasicrystals by applying a rectangular sample with a Griffith crack which is often used in classical elastic media based on the method of finite difference. This paper mainly is to investigate the variation of phonon, phason fields, and stress singularity around the crack tip including the stress intensity factor. In addition, the moving boundary due to the crack propagation has also been treated by introducing an additional condition for determining solution. The influence of wave propagation and diffusion in the dynamic process is also discussed in detail. Through comparing the results of octagonal quasicrystals with the results of crystal, this paper proclaims the influence of phonon-phason coupling in dynamic fracture problem of octagonal quasicrystals which should not be neglected

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom