Simulation of Coupled Fire/Atmosphere Interaction with the MesoNH‐ForeFire Models
Author(s) -
Jean-Baptiste Filippi,
Frédéric Bosseur,
Xavier Pialat,
PaulAntoine Santoni,
Susanna Strada,
C. Mari
Publication year - 2011
Publication title -
journal of combustion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.45
H-Index - 18
eISSN - 2090-1968
pISSN - 2090-1976
DOI - 10.1155/2011/540390
Subject(s) - atmosphere (unit) , mesoscale meteorology , grid , computer science , meteorology , atmospheric model , environmental science , combustion , simulation , atmospheric sciences , geology , physics , chemistry , organic chemistry , geodesy
Simulating interaction between forest fire and atmospheric processes requires a highly detailed and computationally intensive model. Processing this type of simulations in wildland fires forbids combustion-based models due to the large amount of fuels to be simulated in terms of quantity and diversity. In this paper, we propose an approach that couples a fire area simulator to a mesoscale weather numerical model in order to simulate local fire/atmosphere interaction. Five idealized simulation cases are analysed showing strong interaction between topography and the fire front induced wind, interactions that could not be simulated in noncoupled simulations. The same approach applied to a real-case scenario also shows results that are qualitatively comparable to the observed case. All these results were obtained in less than a day of calculation on a dual processor computer, leaving room for improvement in grid resolution that is currently limited to fifty meter
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom