A Class of Analytic Functions with Missing Coefficients
Author(s) -
DingGong Yang,
Jin-Lin Liu
Publication year - 2011
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2011/456729
Subject(s) - mathematics , subordination (linguistics) , analytic function , convexity , unit disk , convolution (computer science) , class (philosophy) , mathematical analysis , unit (ring theory) , pure mathematics , philosophy , linguistics , mathematics education , machine learning , artificial intelligence , artificial neural network , computer science , financial economics , economics
Let (,,,)(−1≤<1,<,0<≤1 and >0) denote the class of functions of the form∑()=+∞=+1(∈={1,2,3,…}),which are analytic in the open unit disk and satisfythe following subordination condition ()+()≺((1+)/(1+)), for(∈;≤1;0<<1),(1+)/(1+), for(∈;=1). We obtain sharp bounds on Re(),Re()/,|()|,and coefficient estimates for functions()belonging to the class(,,,). Conditions for univalency and starlikeness, convolution properties, and the radius of convexityare also considered
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom