z-logo
open-access-imgOpen Access
Computing the Characteristic Polynomials of a Class of Hyperelliptic Curves for Cryptographic Applications
Author(s) -
Lin You,
Guangguo Han,
Jiwen Zeng,
Yongxuan Sang
Publication year - 2011
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2011/437541
Subject(s) - hyperelliptic curve , algorithm , hyperelliptic curve cryptography , computer science , artificial intelligence , mathematics , elliptic curve cryptography , algebra over a field , pure mathematics , encryption , public key cryptography , operating system
Hyperelliptic curves have been widely studied for cryptographic applications, and some special hyperelliptic curves are often considered to be used in practical cryptosystems. Computing Jacobian group orders is an important operation in constructing hyperelliptic curve cryptosystems, and the most common method used for the computation of Jacobian group orders is by computingthe zeta functions or the characteristic polynomials of the related hyperelliptic curves. For the hyperelliptic curve Cq: v2=up+au+b over the field Fq with q being a power of an odd prime p, Duursma and Sakurai obtained its characteristic polynomial for q=p, a=−1, and b∈Fp. In this paper, we determine the characteristic polynomials of Cq over the finite field Fpn for n=1, 2 and a, b∈Fpn. We also give some computational data which show that many of those curves have large prime factors in their Jacobian group orders, which are both practical and vital for the constructions of efficient and secure hyperelliptic curve cryptosystems

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom