z-logo
open-access-imgOpen Access
Sustainable Modular Adaptive Redundancy Technique Emphasizing Partial Reconfiguration for Reduced Power Consumption
Author(s) -
Rawad Al-Haddad,
Rashad S. Oreifej,
Rizwan A. Ashraf,
Ronald F. DeMara
Publication year - 2011
Publication title -
international journal of reconfigurable computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 16
eISSN - 1687-7209
pISSN - 1687-7195
DOI - 10.1155/2011/430808
Subject(s) - control reconfiguration , computer science , field programmable gate array , embedded system , fault tolerance , modular design , redundancy (engineering) , triple modular redundancy , reconfigurable computing , reconfigurability , distributed computing , operating system
As reconfigurable devices' capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. Organic computing paradigms have been proposed for fault-tolerant systems because they promote behaviors that allow complex digital systems to adapt and survive in demanding environments. In this paper, we develop a sustainable modular adaptive redundancy technique (SMART) composed of a two-layered organic system. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach called reconfigurable adaptive redundancy system (RARS). The software layer supervises the organic activities on the FPGA and extends the self-healing capabilities through application-independent, intrinsic, and evolutionary repair techniques that leverage the benefits of dynamic partial reconfiguration (PR). SMART was evaluated using a Sobel edge-detection application and was shown to tolerate stressful sequences of injected transient and permanent faults while reducing dynamic power consumption by 30% compared to conventional triple modular redundancy (TMR) techniques, with nominal impact on the fault-tolerance capabilities. Moreover, PR is employed to keep the system on line while under repair and also to reduce repair time. Experiments have shown a 27.48% decrease in repair time when PR is employed compared to the full bitstream configuration case

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom