z-logo
open-access-imgOpen Access
Interim FDG-PET Scan in Hodgkin's Lymphoma: Hopes and Caveats
Author(s) -
M. André,
Thierry Vander Borght,
André Bosly
Publication year - 2010
Publication title -
advances in hematology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 31
eISSN - 1687-9112
pISSN - 1687-9104
DOI - 10.1155/2011/430679
Subject(s) - interim , medicine , clinical trial , interim analysis , lymphoma , medical physics , mediastinum , radiology , nuclear medicine , archaeology , history
FDG-PET has recently emerged as an important tool for the management of Hodgkins lymphoma. Although its use for initial staging and response evaluation at the end of treatment is well established, the place of interim PET for response assessment and subsequent treatment tailoring is still quite controversial. The use of interim PET after a few cycles of chemotherapy may allow treatment reduction for good responders, leading to lesser treatment toxicities as well as early treatment adaptation for bad responders with a potential higher chance for cure. Interpretation of interim PET is a rapidly moving field. Actually, visual interpretation is preferred over quantitative interpretation in this situation. The notion of minimal residual uptake emerged for faint persisting FDG uptake, but has evolved during the recent years. Guidelines using mediastinum and liver as references have been proposed at the expert meeting in Deauville 2009. Actually, several trials are ongoing both for localised and advanced disease to evaluate the FDG-PET potential for early treatment monitoring and tailoring. Until the results of these prospective randomized trials become available, treatment changes according to the interim PET results should remain inappropriate and limited to well-conducted clinical trials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom