z-logo
open-access-imgOpen Access
Photodegradation of Chloridazon Using Coreshell Magnetic Nanocompsites
Author(s) -
Dina M. Fouad,
Mona B. Mohamed
Publication year - 2011
Publication title -
journal of nanotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 29
eISSN - 1687-9511
pISSN - 1687-9503
DOI - 10.1155/2011/416060
Subject(s) - photodegradation , materials science , photocatalysis , nanoparticle , nanomaterials , transmission electron microscopy , visible spectrum , catalysis , ultraviolet , particle size , photochemistry , degradation (telecommunications) , nuclear chemistry , chemical engineering , analytical chemistry (journal) , nanotechnology , chromatography , optoelectronics , organic chemistry , chemistry , telecommunications , computer science , engineering
A new synthesized magnetic nanoparticle of Fe3O4 and coreshell Fe3O4@Au is prepared chemically. A comparative study between the photocatalytic activity between Fe3O4 and core shell Au-Fe3O4 nanoparticles has been studied on the effect of UV and sun light on the photodegradation of chloridazon. The particle has been prepared using chemical methods and the particle size and shape have been examined via transmission electron microscopy (TEM). Analysis of the degradation of 20 ppm chloridazon under ultraviolet (UV) and visible light was analyzed with high-performance liquid chromatography (HPLC) and UV-Visible Spectra. Influence of different parameters on the activity photodegradation rate has been studied. The results indicate that the Fe3O4@Au nanoparticles are much more active catalyst in presence of sun light than pure Fe3O4 nanomaterials which have maximum absorption at 560 nm

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom