z-logo
open-access-imgOpen Access
Analytical Expressions for Frequency and Buckling of Large Amplitude Vibration of Multilayered Composite Beams
Author(s) -
RamazanAli JafariTalookolaei,
M. H. Kargarnovin,
Mohammad Taghi Ahmadian,
Maryam Abedi
Publication year - 2011
Publication title -
advances in acoustics and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.237
H-Index - 14
eISSN - 1687-627X
pISSN - 1687-6261
DOI - 10.1155/2011/407470
Subject(s) - vibration , rotary inertia , buckling , harmonic balance , equations of motion , natural frequency , nonlinear system , inertia , deflection (physics) , structural engineering , mechanics , homotopy analysis method , fundamental frequency , mathematical analysis , classical mechanics , mathematics , physics , engineering , acoustics , quantum mechanics
The aim of this paper is to present analytical and exact expressions for the frequency and buckling of large amplitude vibration of the symmetrical laminated composite beam (LCB) with simple and clamped end conditions. The equations of motion are derived by using Hamilton's principle. The influences of axial force, Poisson effect, shear deformation, and rotary inertia are taken into account in the formulation. First, the geometric nonlinearity based on the von Karman's assumptions is incorporated in the formulation while retaining the linear behavior for the material. Then, the displacement fields used for the analysis are coupled using the equilibrium equations of the composite beam. Substituting this coupled displacement fields in the potential and kinetic energies and using harmonic balance method, we obtain the ordinary differential equation in time domain. Finally, applying first order of homotopy analysis method (HAM), we get the closed form solutions for the natural frequency and deflection of the LCB. A detailed numerical study is carried out to highlight the influences of amplitude of vibration, shear deformation and rotary inertia, slenderness ratios, and layup in the case of laminates on the natural frequency and buckling load

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom