Novel NoC Topology Construction for High-Performance Communications
Author(s) -
Ezhumalai Periyathambi,
A. Chilambuchelvan,
C. Arun
Publication year - 2011
Publication title -
journal of computer networks and communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 23
eISSN - 2090-715X
pISSN - 2090-7141
DOI - 10.1155/2011/405697
Subject(s) - network topology , computer science , scalability , latency (audio) , interconnection , network on a chip , system on a chip , embedded system , chip , power consumption , computer architecture , parallel computing , topology (electrical circuits) , distributed computing , computer network , power (physics) , telecommunications , engineering , physics , quantum mechanics , database , electrical engineering
Different intellectual property (IP) cores, including processor and memory, are interconnected to build a typical system-on-chip (SoC) architecture. Larger SoC designs dictate the data communication to happen over the global interconnects. Network-on-Chip(NoC) architectures have been proposed as a scalable solution to the global communication challenges in nanoscale systems-on-chip (SoC) design. We proposed an idea on building customizing synthesis network—on-chip with the better flow partitioning and also considered power and area reduction as compared to the already presented regular topologies. Hence to improve the performance of SoC, first, we did a performance study of regular interconnect topologies MESH, TORUS, BFT and EBFT, we observed that the overall latency and throughput of the EBFT is better compared to other topologies, The next best in case of latency and throughput is BFT. Experimental results on a variety of NoC benchmarks showed that our synthesis results were achieved reduction in power consumption and average hop count over custom topology implementation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom