The Influence of Prior Natural Aging on the Subsequent Artificial Aging Response of Aluminium Alloy A356 with Respective Globular and Dendritic Microstructures
Author(s) -
Heinrich Möller,
Gonasagren Govender,
Pierre Rossouw,
W.E. Stumpf
Publication year - 2010
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2011/375150
Subject(s) - materials science , microstructure , alloy , casting , aluminium , globular cluster , composite material , metallurgy , computer science , stars , computer vision
Alloy A356 is one of the most popular alloys used for semisolid metal forming. The heat treatment cycles that are currently applied to semisolid processed components are mostly those that are in use for dendritic casting alloys. The assumption has been made that these heat treatments are not necessarily the optimum treatments, as the difference in solidification history and microstructure of SSM processed components should be considered. The objective of this study is to determine whether dendritic A356 behaves in a similar way to globular A356 in terms of its response to artificial aging with or without prior natural aging. The results indicate that the differences in microstructures (globular or dendritic) do not have a noteworthy effect on the heat treatment response. It is also shown that strong linear correlations are found between T4 and T6 hardness and wt% Mg of A356, regardless of the casting technique used.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom