z-logo
open-access-imgOpen Access
Modulation of NK Cell Autocrine-Induced Eosinophil Chemotaxis by Interleukin-15 and Vitamin D3: A Possible NK-Eosinophil Crosstalk via IL-8 in the Pathophysiology of Allergic Rhinitis
Author(s) -
Amr E. ElShazly,
Philippe Lefèbvre
Publication year - 2011
Publication title -
mediators of inflammation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.37
H-Index - 97
eISSN - 1466-1861
pISSN - 0962-9351
DOI - 10.1155/2011/373589
Subject(s) - eosinophil , chemotaxis , interleukin 5 , immunology , cytokine , autocrine signalling , interleukin , chemistry , biology , medicine , receptor , asthma
Natural killer cells (NK) secrete eosinophilotactic cytokines, however, whether they contribute to eosinophil chemotaxis by secreting IL-8 is not known. We investigated the ability of CD56+CD3-ve (NK cells) to induce chemotaxis of peripheral blood eosinophils from allergic rhinitis (AR) patients, through IL-8 secretion, and the effects of IL-15, the NK cell proactivating cytokine, and calcitriol: 1 α , 25-dihydroxy Vitamin D 3 (vitamin D 3 ), the immunomodulator agent, in this scenario. Herein, it is shown that supernatants from unstimulated NK cells exhibited chemotactic activity against eosinophil. This effect was significantly augmented by IL-15 (1 ng/mL) treatment, resulting in an increase in the chemotactic index of approximately 3 folds and was abrogated by neutralizing antibody (Ab) to IL-8 in a dose-dependent fashion. The amount of IL-8 secreted by NK cells was increased by IL-15 treatment from levels of 88.64 ± 21.5 to 178.9 ± 23.6 Pg/mL and was significantly reduced by 10 −6  M vitamin D 3 to levels of 59.2 ± 16.3 Pg/mL. Our results indicate a novel inflammatory crosstalk between NK cells and eosinophils via IL-15/IL-8 axis that can be modulated by vitamin D 3 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom