Structural Characteristics of Bimetallic Catalysts Supported on Nano-Ceria
Author(s) -
Joe F. Bozeman,
Hong Huang
Publication year - 2011
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2011/329757
Subject(s) - materials science , bimetallic strip , catalysis , bimetal , nanocrystalline material , nanocomposite , chemical engineering , oxide , solid solution , nanoparticle , nano , calcination , metallurgy , inorganic chemistry , metal , composite material , nanotechnology , chemistry , engineering , biochemistry
Cu-Pt bimetal catalysts supported on nanocrystalline CeO2 (nano-ceria) are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom