The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil
Author(s) -
Jianbo Liang,
Naoki Kishi,
Tetsuo Soga,
Takashi Jimbo
Publication year - 2011
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2011/268508
Subject(s) - materials science , copper , nanowire , crystallite , grain size , foil method , oxide , thermal oxidation , copper oxide , surface roughness , composite material , metallurgy , chemical engineering , nanotechnology , engineering
We have investigated the effects of grain size and orientation of copper substrates for the growth of cupric oxide nanowires by thermal oxidation method. Long, less-roughness, high-density, and aligned cupric oxide nanowires have been synthesized by heating (200) oriented copper foils with small grain size in air gas. Long and aligned nanowires of diameter around 80 nm can only be formed within a short temperature range from 400 to 700°C. On the other hand, uniform, smooth-surface, and aligned nanowires were not formed in the case of larger crystallite size of copper foils with (111) and (200) orientation. Smaller grain size of copper foil with (200) orientation is favorable for the growth of highly aligned, smooth surface, and larger-diameter nanowires by thermal oxidation method
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom