Multiresolution Hilbert Approach to Multidimensional Gauss-Markov Processes
Author(s) -
Thibaud Taillefumier,
Jonathan Touboul
Publication year - 2011
Publication title -
international journal of stochastic analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.19
H-Index - 28
eISSN - 2090-3340
pISSN - 2090-3332
DOI - 10.1155/2011/247329
Subject(s) - mathematics , markov chain , markov process , gauss , markov kernel , mathematical optimization , variable order markov model , markov model , quantum mechanics , statistics , physics
The study of the multidimensional stochastic processes involves complex computations in intricate functional spaces. In particular, the diffusion processes, which include the practically important Gauss-Markov processes, are ordinarily defined through the theory of stochastic integration. Here, inspired by the Lévy-Ciesielski construction of the Wiener process, we propose an alternative representation of multidimensional Gauss-Markov processes as expansions on well-chosen Schauder bases, with independent random coefficients of normal law with zero mean and unit variance. We thereby offer a natural multiresolution description of the Gauss-Markov processes as limits of finite-dimensional partial sums of the expansion, that are strongly almost-surely convergent. Moreover, such finite-dimensional random processes constitute an optimal approximation of the process, in the sense of minimizing the associated Dirichlet energy under interpolating constraints. This approach allows for a simpler treatment of problems in many applied and theoretical fields, and we provide a short overview of applications we are currently developing
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom