Effect of Artificial Saliva on the Apatite Structure of Eroded Enamel
Author(s) -
Xiaojie Wang,
Boriana Mihailova,
Arndt Klocke,
Stefanie Heidrich,
U. Bismayer
Publication year - 2011
Publication title -
international journal of spectroscopy
Language(s) - English
Resource type - Journals
eISSN - 1687-9457
pISSN - 1687-9449
DOI - 10.1155/2011/236496
Subject(s) - enamel paint , citric acid , apatite , saliva , fluoride , chemistry , scanning electron microscope , attenuated total reflection , aqueous solution , nuclear chemistry , materials science , chemical engineering , infrared spectroscopy , mineralogy , inorganic chemistry , composite material , biochemistry , organic chemistry , engineering
Citric acid-induced changes in the structure of the mineral component of enamel stored in artificial saliva were studied by attenuated total reflectance infrared spectroscopy as well as complementary electron probe microanalysis and scanning electron microscopy. The results indicate that the application of artificial saliva for several hours (the minimum time period proved is 4 h) leads to slight, partial recovering of the local structure of eroded enamel apatite. However, artificial saliva surrounding cannot stop the process of loosening and breaking of P–O–Ca atomic linkages in enamel subjected to multiple citric acid treatments. Irreversible changes in the atomic bonding within 700 nm thick enamel surface layer are observed after three times exposure for 1 min to aqueous solution of citric acid having a pH value of 2.23, with a 24-hour interval between the individual treatments. The additional treatment with basic fluoride-containing solutions (1.0% NaF) did not demonstrate a protective effect on the enamel apatite structure per se
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom