Measurement of Terahertz Optical-Beat Frequency Using High-Order Harmonics of Microwave in a Photoconductive Device
Author(s) -
Kengo Murasawa,
Koki Sato,
Takehiko Hidaka
Publication year - 2011
Publication title -
advances in optical technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.124
H-Index - 25
eISSN - 1687-6407
pISSN - 1687-6393
DOI - 10.1155/2011/230615
Subject(s) - terahertz radiation , harmonics , microwave , beat (acoustics) , photocurrent , optics , optoelectronics , direct conversion receiver , photoconductivity , photomixing , materials science , laser , physics , homodyne detection , far infrared laser , terahertz metamaterials , voltage , quantum mechanics
A method for measuring frequencies of the terahertz (THz) radiation emitted by the antenna mounted on the photoconductive (PC) device is presented. Two laser beams with slightly different frequencies irradiate the PC device, producing a beat current of 1 THz in the photocurrent. A microwave signal is applied to the antenna electrode. The frequency of the THz wave is measured using the homodyne detection of the optical beat with the high-order harmonics of the microwave. It is being investigated that the high-order harmonics are produced by the PC device owing to its nonlinearity. Periodic peaks generated by the homodyne detection were observed in the photocurrent, as the microwave was swept from 16 to 20 GHz with a power of −40 dBm. Using the peak frequencies, the THz-wave frequency was determined to be 1030.3±3.73 GHz. The measurement error is estimated to be less than 0.43 GHz. The proposed method realizes a compact frequency meter in the THz region
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom