z-logo
open-access-imgOpen Access
Analysis of Intergranular Precipitation in Isothermally Aged Nitrogen-Containing Austenitic Stainless Steels by an Electrochemical Method and Its Relation to Cryogenic Toughness
Author(s) -
Maribel L. SaucedoMuñoz,
Víctor M. LópezHirata,
H.J. DorantesRosales,
Erika O. Ávila-Dávila
Publication year - 2011
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2011/210209
Subject(s) - materials science , austenite , intergranular corrosion , metallurgy , precipitation , charpy impact test , isothermal process , volume fraction , nitrogen , dilatometer , polarization (electrochemistry) , analytical chemistry (journal) , toughness , corrosion , microstructure , composite material , thermodynamics , physics , chemistry , chromatography , quantum mechanics , meteorology , thermal expansion
The precipitation process in two N-containing austenitic stainless steels, aged at temperatures between 873 and 1173 K for times from 10 to 1000 min, was analyzed by an electrochemical method based on the anodic polarization test with an electrolyte of 1 N KOH solution. The anodic polarization curves showed the following intergranular precipitation sequence: austenite → austenite + Cr23C6→ austenite + Cr23C6 + Cr2N. Besides, the fastest precipitation kinetics was detected in the aged steel with the highest content of nitrogen and carbon due to its higher driving force for precipitation. The higher the aging temperature, the higher volume fraction of precipitates. The precipitation fraction can be associated with the current density of the dissolution peaks of each phase. The Charpy-V-Notch impact energy of the aged specimens decreased with the increase in the volume fraction of precipitates

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom