z-logo
open-access-imgOpen Access
Graph Invariants and Large Cycles: A Survey
Author(s) -
Zh. G. Nikoghosyan
Publication year - 2011
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/2011/206404
Subject(s) - mathematics , algebraic number , graph , pure mathematics , combinatorics , mathematical analysis
Graph invariants provide a powerful analytical tool for investigation of abstract substructures of graphs. This paper is devoted to large cycle substructures, namely, Hamilton, longest and dominating cycles and some generalized cycles including Hamilton and dominating cycles as special cases. In this paper, we have collected 36 pure algebraic relations between basic (initial) graph invariants ensuring the existence of a certain type of large cycles. These simplest kind of relations having no forerunners in the area actually form a source from which nearly all possible hamiltonian results (including well-known Ore's theorem, Posa's theorem, and many other generalizations) can be developed further by various additional new ideas, generalizations, extensions, restrictions, and structural limitations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom