z-logo
open-access-imgOpen Access
Robust Design Optimization of an Aerospace Vehicle Prolusion System
Author(s) -
Muhammad Aamir Raza,
Liang Wang
Publication year - 2011
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2011/145692
Subject(s) - robustness (evolution) , percentile , simulated annealing , parametric statistics , design of experiments , thrust , impulse (physics) , engineering , aerospace , robust optimization , sensitivity (control systems) , mathematical optimization , computer science , mathematics , aerospace engineering , statistics , biochemistry , chemistry , physics , quantum mechanics , electronic engineering , gene
This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom