z-logo
open-access-imgOpen Access
Reduced-Order Model Development for Airfoil Forced Response
Author(s) -
Jeffrey M. Brown,
Ramana V. Grandhi
Publication year - 2008
Publication title -
international journal of rotating machinery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.265
H-Index - 33
eISSN - 1026-7115
pISSN - 1023-621X
DOI - 10.1155/2008/387828
Subject(s) - airfoil , response analysis , computer science , mistuning , frequency response , mathematics , physics , mechanics , acoustics , vibration , structural engineering , engineering , electrical engineering
Two new reduced-order models are developed to accurately and rapidly predict geometry deviation effects on airfoil forced response. Both models have significant application to improved mistuning analysis. The first developed model integrates a principal component analysis approach to reduce the number of defining geometric parameters, semianalytic eigensensitivity analysis, and first-order Taylor series approximation to allow rapid as-measured airfoil response analysis. A second developed model extends this approach and quantifies both random and bias errors between the reduced and full models. Adjusting for the bias significantly improves reduced-order model accuracy. The error model is developed from a regression analysis of the relationship between airfoil geometry parameters and reduced-order model error, leading to physics-based error quantification. Both models are demonstrated on an advanced fan airfoil's frequency, modal force, and forced response

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom