Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass
Author(s) -
Ju Hyeon Choi,
Alfred A. Margaryan,
Ashot Margaryan,
Frank G. Shi,
Wytze van der Veer
Publication year - 2007
Publication title -
advances in optoelectronics
Language(s) - English
Resource type - Journals
eISSN - 1687-5648
pISSN - 1687-563X
DOI - 10.1155/2007/39892
Subject(s) - algorithm , computer science
We demonstrate new series of heavy metal containing fluorophosphate glass system. The fluorescence and nonradiative properties of Nd3+ ions are investigated as a function of Nd2O3 concentration. The variation of intensity parameters Ω2, Ω4, and Ω6 is determined from absorption spectra. The spontaneous probability (A) and branching ratio (β) are determined using intensity parameters. The emission cross sections for the 4F3/2→4I13/2 transition, which is calculated by Fuchtbabauer-Ladenburg method, decrease from 6.1×10−21 to 3.0×10−21(pm2) and those for the 4F3/2→4I11/2 transition decrease from 3.51×10−20 to 1.7×10−20 as Nd2O3 concentration increase up to 3 wt%. The nonradiative relaxation is analyzed in terms of multiphonon relaxation and concentration quenching due to energy transfer among Nd3+ ions. Finally, the above results obtained at 1 wt %Nd2O3 are compared with some of reported laser host glasses which indicated the potentials for broadband-amplifiers and high-power laser applications
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom