z-logo
open-access-imgOpen Access
Computational Exploration of the Biological Basis of Black-Scholes Expected Utility Function (Erratum)
Author(s) -
Sukanto Bhattacharya,
Kuldeep Kumar
Publication year - 2007
Publication title -
journal of applied mathematics and decision sciences
Language(s) - English
Resource type - Journals
eISSN - 1532-7612
pISSN - 1173-9126
DOI - 10.1155/2007/36729
Subject(s) - basis (linear algebra) , function (biology) , black–scholes model , computational finance , computer science , mathematics , econometrics , biology , statistics , evolutionary biology , volatility (finance) , geometry
It has often been argued that there exists an underlying biological basis of utility functions. Taking this line of argument a step further in this paper, we have aimed to computationally demonstrate the biological basis of the Black-Scholes functional form as applied to classical option pricing and hedging theory. The evolutionary optimality of the classical Black-Scholes function has been computationally established by means of a haploid genetic algorithm model. The objective was to minimize the dynamic hedging error for a portfolio of assets that is built to replicate the payoff from a European multi-asset option. The functional form that is seen to evolve over successive generations which best attains this optimization objective is the classical Black-Scholes function extended to a multiasset scenario.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom