z-logo
open-access-imgOpen Access
Optical Polarizability of Zigzag Single-Walled Carbon Nanotubes Fullerene-Capped at One End and Covalently Bonded with Benzene Rings at the Other End
Author(s) -
O. V. Ogloblya,
D. Hui,
Yuri M. Strzhemechny,
Yu. І. Prylutskyy
Publication year - 2007
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2007/13617
Subject(s) - polarizability , carbon nanotube , materials science , zigzag , azulene , fullerene , covalent bond , molecular physics , excited state , chemical physics , benzene , nanotechnology , photochemistry , atomic physics , organic chemistry , molecule , chemistry , geometry , mathematics , physics
We report on the results of numerical simulations for the linear optical polarizability of single-walled zigzag (9,0) carbon nanotubes with modified ends. The nanotubes of a variable length are fullerene-capped at one end and covalently bonded to a hydrophobic cluster of nine benzene rings at the other end. We investigate electronic and optical properties of such structures within a framework of the Su-Schrieffer-Heeger model. We demonstrated that the localized states in this system exhibit nonlinear characteristics of excited states. The nanotubes have a strongly oscillating dependence of their optical polarizability on the energy of incident light. Spectral features of the optical polarizability drop in intensity and shift towards higher energies with a decrease in the length of a nanotube or upon fullerene-uncapping. The length dependence is similar for the nanotubes without benzene rings, capped either at one or both ends. Potentialapplications are suggested for hydrophobic pollutant control in liquid-purification systems

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom