z-logo
open-access-imgOpen Access
Enforced Expression of Bcl‐2 Selectively Perturbs Negative Selection of Dual Reactive Antibodies
Author(s) -
Evangelia Notidis,
Shailaja Hande,
Tim Manser
Publication year - 2001
Publication title -
journal of immunology research
Language(s) - English
Resource type - Journals
eISSN - 2314-8861
pISSN - 2314-7156
DOI - 10.1155/2001/83595
Subject(s) - dual (grammatical number) , microbiology and biotechnology , antibody , negative selection , selection (genetic algorithm) , chemistry , biology , computer science , genetics , gene , artificial intelligence , genome , art , literature
We investigated the role of apoptosis in the development of B cell memory by analyzing the (p-azophenylarsonate) Ars response in a line of A strain mice in which expression of human Bcl-2 was enforced in the B cell compartment. Previous studies of the Ars immune response in these A. Bcl-2 mice, demonstrated that a large percentage of the antibodies expressed by the Ars induced memory B cell compartment had accumulated point mutations via somatic hypermutation that increased their affinity for both Ars and the autoantigen DNA ("dual reactive" antibodies). This was in sharp contrast to normal A strain mice which displayed no dual reactive B cells in their Ars induced memory B cell compartment. These data suggested that interference with apoptotic pathways regulated by Bcl-2 allows developing memory B cells that have acquired autoreactivity to bypass a peripheral tolerance checkpoint. Further studies of these mice, reported here, demonstrate that enforced expression of Bcl-2 does not alter serum antibody affinity maturation nor positive selection of B cells expressing somatically mutated antibody with an increased affinity for Ars. Moreover, the somatic hypermutation process was unaffected in A. Bcl-2 mice. Thus, enforced expression of Bcl-2 in A. Bcl-2 mice appears to selectively alter a negative selection process that operates during memory B cell differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom