Optimal Detector Design for On-line Testing of Linear Analog Systems
Author(s) -
Emmanuel Simeu
Publication year - 1999
Publication title -
vlsi design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.123
H-Index - 24
eISSN - 1065-514X
pISSN - 1026-7123
DOI - 10.1155/2000/92954
Subject(s) - netlist , state (computer science) , computer science , electronic engineering , line (geometry) , voltage , detector , node (physics) , state space , variable (mathematics) , state variable , class (philosophy) , algorithm , engineering , computer hardware , electrical engineering , mathematics , artificial intelligence , telecommunications , mathematical analysis , statistics , physics , geometry , structural engineering , thermodynamics
The design of integrated fault detector for on-line testing of linear analog systems is discussed in this paper. The method consists in a concurrent processing of available the node voltage signals to provide a residual on-line, that carries information about the faults. Contrary to the few previous works dealing with the particular case of state variable analog systems, the method proposed here is useable without limitation for a larger class of linear analog systems, even when the state variables are not available as measurable voltages. For this purpose, an algorithm providing an extended state space model for any linear analog system from its netlist description is developed and implemented.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom