z-logo
open-access-imgOpen Access
Requirements and Problems in Parallel Model Development at DWD
Author(s) -
Ulrich Schäattler,
Güunther Doms,
J. Steppeler
Publication year - 2000
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2000/609351
Subject(s) - maintainability , software portability , computer science , modular design , numerical weather prediction , grid , software engineering , industrial engineering , operations research , programming language , meteorology , mathematics , engineering , physics , geometry
Nearly 30 years after introducing the first computer model for weather forecasting, the Deutscher Wetterdienst (DWD) is developing the 4th generation of its numerical weather prediction (NWP) system. It consists of a global grid point model (GME) based on a triangular grid and a non-hydrostatic Lokal Modell (LM). The operational demand for running this new system is immense and can only be met by parallel computers. From the experience gained in developing earlier NWP models, several new problems had to be taken into account during the design phase of the system. Most important were portability (including efficieny of the programs on several computer architectures) and ease of code maintainability. Also the organization and administration of the work done by developers from different teams and institutions is more complex than it used to be. This paper describes the models and gives some performance results. The modular approach used for the design of the LM is explained and the effects on the development are discussed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom