z-logo
open-access-imgOpen Access
A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model
Author(s) -
Thomas E. Rosmond
Publication year - 2000
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2000/538260
Subject(s) - computer science , scalability , numerical weather prediction , real time computing , meteorology , operating system , physics
The Navy Operational Global Atmospheric Prediction System (NOGAPS) includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP) centers around the world. The model, developed by the Naval Research Laboratory (NRL) in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC) since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC) scalable systems. The model is designed to run with message passing (MPI). Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP) model software design and data organization to fully exploit future scalable architectures

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom