Extending OpenMP for NUMA Machines
Author(s) -
John Bircsak,
Peter Craig,
RaeLyn Crowell,
Zarka Cvetanovic,
Jonathan Harris,
C. Alexander Nelson,
Carl D. Offner
Publication year - 2000
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2000/464182
Subject(s) - computer science , parallel computing , programming language
This paper describes extensions to OpenMP that implement data placement features needed for NUMA architectures. OpenMP is a collection of compiler directives and library routines used to write portable parallel programs for shared-memory architectures. Writing efficient parallel programs for NUMA architectures, which have characteristics of both shared-memory and distributed-memory architectures, requires that a programmer control the placement of data in memory and the placement of computations that operate on that data. Optimal performance is obtained when computations occur on processors that have fast access to the data needed by those computations. OpenMP -- designed for shared-memory architectures -- does not by itself address these issues. The extensions to OpenMP Fortran presented here have been mainly taken from High Performance Fortran. The paper describes some of the techniques that the Compaq Fortran compiler uses to generate efficient code based on these extensions. It also describes some additional compiler optimizations, and concludes with some preliminary results
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom