Sensitivity of Parameter Changes in Structural Damage Detection
Author(s) -
Christopher H. Jenkins,
Lidvin Kjerengtrøen,
H. Oestensen
Publication year - 1997
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/1997/807239
Subject(s) - deflection (physics) , hinge , modal , structural engineering , normal mode , modal analysis , sensitivity (control systems) , computer science , engineering , acoustics , materials science , vibration , physics , finite element method , optics , electronic engineering , polymer chemistry
Structural damage detection by nondestructive methods is highly desirable. Changes in modal parameters such as frequency, damping, and mode shape are particularly inviting. Evidence is presented here that reveals that static deflection can, in many cases, be a more sensitive predictor of structural damage than frequency. The reasons for this are illuminated within, and hinge on very fundamental issues about the very nature of structural response. Furthermore, static deflection measurements are often easier to make, with higher levels of accuracy than dynamic measurements. Comparisons are made between theoretical models and experimental results for simple structures, with extensions given to more complex structures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom