z-logo
open-access-imgOpen Access
Models and Mechanisms of Hyperalgesia and Allodynia
Author(s) -
Jürgen Sandkühler
Publication year - 2009
Publication title -
physiological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.853
H-Index - 342
eISSN - 1522-1210
pISSN - 0031-9333
DOI - 10.1152/physrev.00025.2008
Subject(s) - allodynia , hyperalgesia , neuroscience , context (archaeology) , medicine , psychology , nociception , biology , receptor , paleontology
Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom