z-logo
open-access-imgOpen Access
Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HVFamily
Author(s) -
Thomas E. DeCoursey
Publication year - 2013
Publication title -
physiological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.853
H-Index - 342
eISSN - 1522-1210
pISSN - 0031-9333
DOI - 10.1152/physrev.00011.2012
Subject(s) - gating , depolarization , biology , ion channel , biophysics , membrane potential , microbiology and biotechnology , voltage gated ion channel , biochemistry , receptor
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom