z-logo
open-access-imgOpen Access
Structure, Gating, and Regulation of the CFTR Anion Channel
Author(s) -
László Csanády,
Paola Vergani,
David C. Gadsby
Publication year - 2018
Publication title -
physiological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.853
H-Index - 342
eISSN - 1522-1210
pISSN - 0031-9333
DOI - 10.1152/physrev.00007.2018
Subject(s) - cystic fibrosis transmembrane conductance regulator , gating , cyclic nucleotide binding domain , phosphorylation , ion channel , chemistry , microbiology and biotechnology , atp binding cassette transporter , transmembrane protein , biophysics , chloride channel , transmembrane domain , ion transporter , biochemistry , transporter , biology , nucleotide , membrane , gene , receptor
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP–dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR’s ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom