z-logo
open-access-imgOpen Access
Proteins and Small Molecules for Cellular Regenerative Medicine
Author(s) -
Eric M. Green,
Richard Lee
Publication year - 2013
Publication title -
physiological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.853
H-Index - 342
eISSN - 1522-1210
pISSN - 0031-9333
DOI - 10.1152/physrev.00005.2012
Subject(s) - regenerative medicine , regeneration (biology) , regenerative process , biology , tissue engineering , small molecule , microbiology and biotechnology , neuroscience , bioinformatics , stem cell , biochemistry , genetics
Regenerative medicine seeks to understand tissue development and homeostasis and build on that knowledge to enhance regeneration of injured tissues. By replenishing lost functional tissues and cells, regenerative medicine could change the treatment paradigm for a broad range of degenerative and ischemic diseases. Multipotent cells hold promise as potential building blocks for regenerating lost tissues, but successful tissue regeneration will depend on comprehensive control of multipotent cells-differentiation into a target cell type, delivery to a desired tissue, and integration into a durable functional structure. At each step of this process, proteins and small molecules provide essential signals and, in some cases, may themselves act as effective therapies. Identifying these signals is thus a fundamental goal of regenerative medicine. In this review we discuss current progress using proteins and small molecules to regulate tissue regeneration, both in combination with cellular therapies and as monotherapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom