z-logo
open-access-imgOpen Access
Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans
Author(s) -
Marcelino Cereijido,
R. Contreras,
Liora Shoshani
Publication year - 2004
Publication title -
physiological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.853
H-Index - 342
eISSN - 1522-1210
pISSN - 0031-9333
DOI - 10.1152/physrev.00001.2004
Subject(s) - polarity (international relations) , tight junction , cell polarity , epithelial polarity , biology , septate junctions , adhesion , epithelium , microbiology and biotechnology , cell adhesion , cell junction , cell , anatomy , chemistry , genetics , organic chemistry
Transporting epithelia posed formidable conundrums right from the moment that Du Bois Raymond discovered their asymmetric behavior, a century and a half ago. It took a century and a half to start unraveling the mechanisms of occluding junctions and polarity, but we now face another puzzle: lest its cells died in minutes, the first high metazoa (i.e., higher than a sponge) needed a transporting epithelium, but a transporting epithelium is an incredibly improbable combination of occluding junctions and cell polarity. How could these coincide in the same individual organism and within minutes? We review occluding junctions (tight and septate) as well as the polarized distribution of Na(+)-K(+)-ATPase both at the molecular and the cell level. Junctions and polarity depend on hosts of molecular species and cellular processes, which are briefly reviewed whenever they are suspected to have played a role in the dawn of epithelia and metazoan. We come to the conclusion that most of the molecules needed were already present in early protozoan and discuss a few plausible alternatives to solve the riddle described above.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom