z-logo
open-access-imgOpen Access
Synectin-dependent gene expression in endothelial cells
Author(s) -
Anthony A. Lanahan,
Thomas W. Chittenden,
Eileen R. Mulvihill,
Kimberly C. Smith,
Stephen M. Schwartz,
Michael Simons
Publication year - 2006
Publication title -
physiological genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.078
H-Index - 112
eISSN - 1531-2267
pISSN - 1094-8341
DOI - 10.1152/physiolgenomics.00145.2006
Subject(s) - biology , gene expression , gene , genetics , gene expression profiling , microbiology and biotechnology
Synectin (GIPC1), a receptor scaffold protein, has been isolated by our laboratory as a syndecan-4 cytoplasmic domain binding partner that regulates important aspects of cell motility (Gao Y, Li M, Chen W, Simons M. J Cell Physiol 184: 373-379, 2000; Tkachenko E, Elfenbein A, Tirziu D, Simons M. Circ Res 98: 1398-1404, 2006). Moreover, synectin plays a major role in arterial morphogenesis and in growth factor signaling in arterial endothelial cells by regulating Rac1 activity (Chittenden TW, Claes F, Lanahan AA, Autiero M, Palac RT, Tkachenko EV, Elfenbein A, Ruiz de Almodovar C, Dedkov E, Tomanek R, Li W, Westmore M, Singh J, Horowitz A, Mulligan-Kehoe MJ, Moodie KL, Zhuang ZW, Carmeliet P, Simons M. Dev Cell 10: 783-795, 2006). The present study was carried out to characterize changes in synectin-dependent gene expression induced by homozygous disruption of the gene in endothelial cells. Using a combination of suppression subtraction hybridization and high throughput microarray technology, we have identified aberrant biological processes of transcriptional regulation in synectin(-/-) primary endothelial cells including abnormal basal regulation of genes associated with development, cell organization and biogenesis, intracellular tracking, and cell adhesion. Analysis of gene expression following FGF2 treatment demonstrated significant abnormalities in transcription, cytoskeletal organization and biogenesis, and protein modification and transport in synectin(-/-) compared with synectin(+/+) endothelial cells. These results confirm synectin involvement in FGF2-dependent signal transduction and provide insights into synectin-dependent gene expression in the endothelium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom