Temporal Patterns of Field Potentials in Vibrissa/Barrel Cortex Reveal Stimulus Orientation and Shape
Author(s) -
Alexander M. Benison,
Tyler Ard,
Allison M. Crosby,
Daniel S. Barth
Publication year - 2006
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.01034.2005
Subject(s) - somatosensory system , stimulus (psychology) , neuroscience , receptive field , barrel cortex , sensory system , communication , artificial intelligence , pattern recognition (psychology) , psychology , computer science , cognitive psychology
During environmental exploration, rats rhythmically whisk their vibrissae along the rostrocaudal axis. Each forward extension of the vibrissa array establishes rapid spatiotemporal contact with an object under investigation. This contact presumably produces equally rapid spatiotemporal patterns of population responses in the vibrissa representation of somatosensory cortex [the posterior medial barrel subfield (PMBSF)] reflecting features of a stimulus. We used extracellular mapping to identify object features based on spatiotemporal patterns of evoked potentials. Spatiotemporal modeling of evoked potential patterns accurately reconstructed linear versus curved stimuli and detected orientation changes as small as 5 degrees. Whiskers forming arcs in the PMBSF, essential for this reconstruction, may represent a fundamental processing module. We propose that the PMBSF may function as a spatial frequency analyzer, with intrarow processing integrating a complementary set of spatial frequencies from the arcs in a single whisk.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom