z-logo
open-access-imgOpen Access
Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection
Author(s) -
MaxPhilipp Stenner,
Vladimir Litvak,
Robb B. Rutledge,
Tino Zaehle,
Friedhelm C. Schmitt,
Jürgen Voges,
HansJochen Heinze,
Raymond J. Dolan
Publication year - 2015
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00988.2014
Subject(s) - nucleus accumbens , neuroscience , prefrontal cortex , local field potential , psychology , nucleus , dopamine , physics , cognition
The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181-190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here