z-logo
open-access-imgOpen Access
Delay of Movement Caused by Disruption of Cortical Preparatory Activity
Author(s) -
Mark M. Churchland,
Krishna V. Shenoy
Publication year - 2006
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00808.2006
Subject(s) - microstimulation , neuroscience , context (archaeology) , premotor cortex , movement (music) , motor cortex , cortex (anatomy) , psychology , premovement neuronal activity , dorsum , stimulation , biology , anatomy , paleontology , philosophy , aesthetics
We tested the hypothesis that delay-period activity in premotor cortex is essential to movement preparation. During a delayed-reach task, we used subthreshold intracortical microstimulation to disrupt putative "preparatory" activity. Microstimulation led to a highly specific increase in reach reaction time. Effects were largest when activity was disrupted around the time of the go cue. Earlier disruptions, which presumably allowed movement preparation time to recover, had only a weak impact. Furthermore, saccadic reaction time showed little or no increase. Finally, microstimulation of nearby primary motor cortex, even when slightly suprathreshold, had little effect on reach reaction time. These findings provide the first evidence, of a causal and temporally specific nature, that activity in premotor cortex is fundamental to movement preparation. Furthermore, although reaction times were increased, the movements themselves were essentially unperturbed. This supports the suggestion that movement preparation is an active and actively monitored process and that movement can be delayed until inaccuracies are repaired. These results are readily interpreted in the context of the recently developed optimal-subspace hypothesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom