z-logo
open-access-imgOpen Access
State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing
Author(s) -
Rajal G. Cohen,
Dagmar Sternad
Publication year - 2011
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00568.2011
Subject(s) - trajectory , computer science , trajectory optimization , control theory (sociology) , sensitivity (control systems) , task (project management) , simulation , artificial intelligence , control (management) , engineering , physics , systems engineering , electronic engineering , astronomy
Timing is central to many coordinated actions, and the temporal accuracy of central nervous system commands presents an important limit to skilled performance. Using target-oriented throwing in a virtual environment as an example task, this study presents a novel analysis that quantifies contributions of timing accuracy and shaping of hand trajectories to performance. Task analysis reveals that the result of a throw is fully determined by the projectile position and velocity at release; zero error can be achieved by a manifold of position and velocity combinations (solution manifold). Four predictions were tested. 1) Performers learn to release the projectile closer to the optimal moment for a given arm trajectory, achieving timing accuracy levels similar to those reported in other timing tasks (~10 ms). 2) Performers develop a hand trajectory that follows the solution manifold such that zero error can be achieved without perfect timing. 3) Skilled performers exploit both routes to improvement more than unskilled performers. 4) Long-term improvement in skilled performance relies on continued optimization of the arm trajectory as timing limits are reached. Average and skilled subjects practiced for 6 and 15 days, respectively. In 6 days, both timing and trajectory alignment improved for all subjects, and skilled subjects showed an advantage in timing. With extended practice, performance continued to improve due to continued shaping of the trajectory, whereas timing accuracy reached an asymptote at 9 ms. We conclude that skilled subjects first maximize timing accuracy and then optimize trajectory shaping to compensate for intrinsic limitations of timing accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom