z-logo
open-access-imgOpen Access
Low error discrimination using a correlated population code
Author(s) -
Gregory W. Schwartz,
Jakob H. Macke,
Dario Amodei,
Hanlin Tang,
Michael J. Berry
Publication year - 2012
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00564.2011
Subject(s) - decoding methods , population , correlation , computer science , spike train , pattern recognition (psychology) , pairwise comparison , mutual information , artificial intelligence , algorithm , spike (software development) , mathematics , geometry , demography , software engineering , sociology
We explored the manner in which spatial information is encoded by retinal ganglion cell populations. We flashed a set of 36 shape stimuli onto the tiger salamander retina and used different decoding algorithms to read out information from a population of 162 ganglion cells. We compared the discrimination performance of linear decoders, which ignore correlation induced by common stimulation, with nonlinear decoders, which can accurately model these correlations. Similar to previous studies, decoders that ignored correlation suffered only a modest drop in discrimination performance for groups of up to ∼30 cells. However, for more realistic groups of 100+ cells, we found order-of-magnitude differences in the error rate. We also compared decoders that used only the presence of a single spike from each cell with more complex decoders that included information from multiple spike counts and multiple time bins. More complex decoders substantially outperformed simpler decoders, showing the importance of spike timing information. Particularly effective was the first spike latency representation, which allowed zero discrimination errors for the majority of shape stimuli. Furthermore, the performance of nonlinear decoders showed even greater enhancement compared with linear decoders for these complex representations. Finally, decoders that approximated the correlation structure in the population by matching all pairwise correlations with a maximum entropy model fit to all 162 neurons were quite successful, especially for the spike latency representation. Together, these results suggest a picture in which linear decoders allow a coarse categorization of shape stimuli, whereas nonlinear decoders, which take advantage of both correlation and spike timing, are needed to achieve high-fidelity discrimination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom