Magnetoencephalography-based identification of functional connectivity network disruption following mild traumatic brain injury
Author(s) -
Ahmad Alhourani,
Thomas A. Wozny,
Deepa Krishnaswamy,
Sudhir Pathak,
Shawn A. Walls,
Avniel Singh Ghuman,
Don Krieger,
David O. Okonkwo,
R. Mark Richardson,
Ajay Niranjan
Publication year - 2016
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00513.2016
Subject(s) - magnetoencephalography , traumatic brain injury , neuroscience , functional connectivity , psychology , cognition , default mode network , neurophysiology , electroencephalography , psychiatry
Mild traumatic brain injury (mTBI) leads to long-term cognitive sequelae in a significant portion of patients. Disruption of normal neural communication across functional brain networks may explain the deficits in memory and attention observed after mTBI. In this study, we used magnetoencephalography (MEG) to examine functional connectivity during a resting state in a group of mTBI subjects (n = 9) compared with age-matched control subjects (n = 15). We adopted a data-driven, exploratory analysis in source space using phase locking value across different frequency bands. We observed a significant reduction in functional connectivity in band-specific networks in mTBI compared with control subjects. These networks spanned multiple cortical regions involved in the default mode network (DMN). The DMN is thought to subserve memory and attention during periods when an individual is not engaged in a specific task, and its disruption may lead to cognitive deficits after mTBI. We further applied graph theoretical analysis on the functional connectivity matrices. Our data suggest reduced local efficiency in different brain regions in mTBI patients. In conclusion, MEG can be a potential tool to investigate and detect network alterations in patients with mTBI. The value of MEG to reveal potential neurophysiological biomarkers for mTBI patients warrants further exploration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom