z-logo
open-access-imgOpen Access
Head direction cell activity in the anterodorsal thalamus requires intact supragenual nuclei
Author(s) -
Benjamin J. Clark,
J. E. Brown,
Jeffrey S. Taube
Publication year - 2012
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00295.2012
Subject(s) - neuroscience , thalamus , vestibular system , vestibular nuclei , nucleus , biology , inhibitory postsynaptic potential , psychology , anatomy
Neural activity in several limbic areas varies as a function of the animal's head direction (HD) in the horizontal plane. Lesions of the vestibular periphery abolish this HD cell signal, suggesting an essential role for vestibular afference in HD signal generation. The organization of brain stem pathways conveying vestibular information to the HD circuit is poorly understood; however, recent anatomical work has identified the supragenual nucleus (SGN) as a putative relay. To test this hypothesis, we made lesions of the SGN in rats and screened for HD cells in the anterodorsal thalamus. In animals with complete bilateral lesions, the overall number of HD cells was significantly reduced relative to control animals. In animals with unilateral lesions of the SGN, directional activity was present, but the preferred firing directions of these cells were unstable and less influenced by the rotation of an environmental landmark. In addition, we found that preferred directions displayed large directional shifts when animals foraged for food in a darkened environment and when they were navigating from a familiar environment to a novel one, suggesting that the SGN plays a critical role in projecting essential self-motion (idiothetic) information to the HD cell circuit.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom