Inactivity induces increases in abdominal fat
Author(s) -
Matthew J. Laye,
John P. Thyfault,
Craig S. Stump,
Frank W. Booth
Publication year - 2006
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.01018.2006
Subject(s) - adipocyte , endocrinology , adipose capsule of kidney , medicine , muscle hypertrophy , fat mass , hyperplasia , fat pad , abdominal fat , adipose tissue , zoology , obesity , biology , kidney
Previously, inducing inactivity for 53 h after 21 days of voluntary running resulted in a 25 and 48% increase in epididymal and omental fat pad weights, respectively, while rats continued to eat more than a group that never had access to a running wheel (J Physiol 565: 911-925, 2005). We wanted to test the hypothesis that inactivity, independent of excessive caloric intake, could induce an increase in fat pad mass. Twenty-one-day-old rats were given access to voluntary running wheels for 42-43 days so that they were running approximately 9 km/day in the last week of running, after which wheels were locked for 5, 53, or 173 h (WL5, WL53, WL173) before the rats were killed. During the 53 and 173 h of inactivity, one group of animals was pair fed (PF) to match sedentary controls, whereas the other continued to eat ad libitum (AL). Epididymal and retroperitoneal fat masses were significantly increased in the WL173-PF vs. the WL5 group, whereas epididymal, perirenal, and retroperitoneal fat masses were all significantly increased in the WL173-AL group compared with the WL5 group. Additionally, hyperplasia, and not hypertrophy, of the epididymal fat mass was responsible for the increase at WL173-AL as demonstrated by a significant increase in cell number vs. WL5, with no change in cell diameter or volume. Thus two important findings have been elucidated: 1) increases in measured abdominal fat masses occur in both AL and PF groups at WL173, and 2) adipocyte expansion via hyperplasia occurred with an ad libitum diet following cessation of voluntary running.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom