TNF signals via neuronal-type nitric oxide synthase and reactive oxygen species to depress specific force of skeletal muscle
Author(s) -
Shawn A. Stasko,
Brian J. Hardin,
Jeffrey D. Smith,
Jennifer S. Moylan,
Michael B. Reid
Publication year - 2013
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00871.2012
Subject(s) - nitric oxide synthase , nitric oxide , reactive oxygen species , chemistry , oxygen , skeletal muscle , atp synthase , biochemistry , endocrinology , biophysics , medicine , biology , enzyme , organic chemistry
TNF promotes skeletal muscle weakness, in part, by depressing specific force of muscle fibers. This is a rapid, receptor-mediated response, in which TNF stimulates cellular oxidant production, causing myofilament dysfunction. The oxidants appear to include nitric oxide (NO); otherwise, the redox mechanisms that underlie this response remain undefined. The current study tested the hypotheses that 1) TNF signals via neuronal-type NO synthase (nNOS) to depress specific force, and 2) muscle-derived reactive oxygen species (ROS) are essential co-mediators of this response. Mouse diaphragm fiber bundles were studied using live cell assays. TNF exposure increased general oxidant activity (P < 0.05; 2',7'-dichlorodihydrofluorescein diacetate assay) and NO activity (P < 0.05; 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate assay) and depressed specific force across the full range of stimulus frequencies (1-300 Hz; P < 0.05). These responses were abolished by pretreatment with N(ω)-nitro-L-arginine methyl ester (L-NAME; a nonspecific inhibitor of NOS activity), confirming NO involvement. Genetic nNOS deficiency replicated L-NAME effects on TNF-treated muscle, diminishing NO activity (-80%; P < 0.05) and preventing the decrement in specific force (P < 0.05). Comparable protection was achieved by selective depletion of muscle-derived ROS. Pretreatment with either SOD (degrades superoxide anion) or catalase (degrades hydrogen peroxide) depressed oxidant activity in TNF-treated muscle and abolished the decrement in specific force. These findings indicate that TNF signals via nNOS to depress contractile function, a response that requires ROS and NO as obligate co-mediators.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom