Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia
Author(s) -
Yingjie Peng,
Jayasri Nanduri,
Xin Zhang,
Ning Wang,
Gayatri Raghuraman,
J. L. Seagard,
Ganesh Kumar,
Nanduri R. Prabhakar
Publication year - 2011
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00529.2011
Subject(s) - baroreceptor , baroreflex , carotid sinus , medicine , endocrinology , endothelin receptor , hypoxia (environmental) , endothelin 1 , blood pressure , heart rate , anesthesia , chemistry , receptor , oxygen , organic chemistry
The objectives of the present study were to examine the effects of intermittent hypoxia (IH) on arterial baroreflex function and assess the underlying mechanism(s). Experiments were performed on adult male rats treated with 14 days of IH (15 s of hypoxia, 5 min of normoxia; 8 h/day) or normoxia (control). Arterial blood pressures were elevated in IH-treated rats, and this effect was associated with attenuated heart rate and splanchnic sympathetic nerve responses to arterial baroreflex activation. In IH-treated rats, carotid baroreceptor responses to elevated sinus pressures were attenuated. Endothelin-1 (ET-1) levels were elevated in the carotid sinus region of IH-treated rats, and this effect was associated with increased endothelin converting enzyme (ECE) activity, which generates biologically active ET-1. ET(A) receptor antagonist prevented the effects of IH on carotid baroreceptor activity. In IH-treated rats, reactive oxygen species (ROS) levels were elevated in the carotid sinus region, and antioxidant treatment prevented the effects of IH on ET-1 levels, ECE activity, carotid baroreceptor activity, and baroreflex function. These results demonstrate that 1) IH attenuates arterial baroreflex function, which is in part due to reduced carotid baroreceptor responses to elevated carotid sinus pressure, and 2) IH-induced carotid baroreceptor dysfunction involves reactive oxygen species-dependent upregulation of ET-1 signaling in the carotid sinus region.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom