Insignificant response of the fetal placental circulation to arterial hypotension in sheep
Author(s) -
J. Job Faber,
Debra F. Anderson,
Samantha Louey,
Kent L. Thornburg,
G Giraud
Publication year - 2011
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00345.2011
Subject(s) - enalaprilat , blood pressure , vascular resistance , fetus , fetal circulation , medicine , endocrinology , placental circulation , hemodynamics , mean arterial pressure , placenta , blood flow , ace inhibitor , angiotensin converting enzyme , anesthesia , biology , heart rate , pregnancy , genetics
Infusion of the angiotensin-converting enzyme inhibitor enalaprilat into fetal sheep caused a profound arterial hypotension within days. Five fetal lambs were infused with enalaprilat for 8 days starting at day 128 of gestation. Total accumulated dose was 0.30 ± 0.11 mg/kg. Arterial pressure decreased from 43.6 to 25.6 mmHg; venous pressure did not change. Biventricular output was not statistically significantly changed; placental blood flow decreased almost in proportion to the decrease in pressure but the increase in somatic flow was not statistically significant. There were no significant changes in pressure 30 min after the initial 50-μg loading dose of enalaprilat. However, the arterial pressure responses to test doses of ANG I were largely abolished. After 1 day, however, there was a significant decrease in somatic vascular resistance, which became stronger with time, but almost no decrease in the placental resistance. We conclude that the fetal somatic circulation exhibits a slow but strong decrease in resistance but that the response to hypotension is weak or absent in the fetal placenta, possibly because it is already fully relaxed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom