Age and exercise training alter signaling through reactive oxygen species in the endothelium of skeletal muscle arterioles
Author(s) -
Amy L. Sindler,
Rafael Reyes,
Bei Chen,
Payal Ghosh,
Alvaro N. Gurovich,
Lori S. Kang,
Arturo J. Cardounel,
Michael D. Delp,
Judy M. MullerDelp
Publication year - 2013
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00341.2012
Subject(s) - superoxide , vasodilation , endocrinology , endothelium , medicine , chemistry , reactive oxygen species , catalase , nadph oxidase , glutathione peroxidase , superoxide dismutase , skeletal muscle , nitric oxide , biochemistry , oxidative stress , enzyme
Exercise training ameliorates age-related impairments in endothelium-dependent vasodilation in skeletal muscle arterioles. Additionally, exercise training is associated with increased superoxide production. The purpose of this study was to determine the role of superoxide and superoxide-derived reactive oxygen species (ROS) signaling in mediating endothelium-dependent vasodilation of soleus muscle resistance arterioles from young and old, sedentary and exercise-trained rats. Young (3 mo) and old (22 mo) male rats were either exercise trained or remained sedentary for 10 wk. To determine the impact of ROS signaling on endothelium-dependent vasodilation, responses to acetylcholine were studied under control conditions and during the scavenging of superoxide and/or hydrogen peroxide. To determine the impact of NADPH oxidase-derived ROS, endothelium-dependent vasodilation was determined following NADPH oxidase inhibition. Reactivity to superoxide and hydrogen peroxide was also determined. Tempol, a scavenger of superoxide, and inhibitors of NADPH oxidase reduced endothelium-dependent vasodilation in all groups. Similarly, treatment with catalase and simultaneous treatment with tempol and catalase reduced endothelium-dependent vasodilation in all groups. Decomposition of peroxynitrite also reduced endothelium-dependent vasodilation. Aging had no effect on arteriolar protein content of SOD-1, catalase, or glutathione peroxidase-1; however, exercise training increased protein content of SOD-1 in young and old rats, catalase in young rats, and glutathione peroxidase-1 in old rats. These data indicate that ROS signaling is necessary for endothelium-dependent vasodilation in soleus muscle arterioles, and that exercise training-induced enhancement of endothelial function occurs, in part, through an increase in ROS signaling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom