Neuromechanical control of upper airway patency during sleep
Author(s) -
Susheel P. Patil,
Hartmut Schneider,
Jason J. Marx,
E. Gladmon,
Alan R. Schwartz,
Philip L. Smith
Publication year - 2006
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00282.2006
Subject(s) - obstructive sleep apnea , medicine , airway , anesthesia , airway obstruction , sleep apnea , apnea , continuous positive airway pressure , occlusion , pharyngeal muscles , cardiology
Obstructive sleep apnea is caused by pharyngeal occlusion due to alterations in upper airway mechanical properties and/or disturbances in neuromuscular control. The objective of the study was to determine the relative contribution of mechanical loads and dynamic neuromuscular responses to pharyngeal collapse during sleep. Sixteen obstructive sleep apnea patients and sixteen normal subjects were matched on age, sex, and body mass index. Pharyngeal collapsibility, defined by the critical pressure, was measured during sleep. The critical pressure was partitioned between its passive mechanical properties (passive critical pressure) and active dynamic responses to upper airway obstruction (active critical pressure). Compared with normal subjects, sleep apnea patients demonstrated elevated mechanical loads as demonstrated by higher passive critical pressures [-0.05 (SD 2.4) vs. -4.5 cmH2O (SD 3.0), P = 0.0003]. Dynamic responses were depressed in sleep apnea patients, as suggested by failure to lower their active critical pressures [-1.6 (SD 3.5) vs. -11.1 cmH2O (SD 5.3), P < 0.0001] in response to upper airway obstruction. Moreover, elevated mechanical loads placed some normal individuals at risk for sleep apnea. In this subset, dynamic responses to upper airway obstruction compensated for mechanical loads and maintained airway patency by lowering the active critical pressure. The present study suggests that increased mechanical loads and blunted neuromuscular responses are both required for the development of obstructive sleep apnea.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom