Exercise training and muscle microvascular oxygenation: functional role of nitric oxide
Author(s) -
Daniel M. Hirai,
Steven W. Copp,
Scott K. Ferguson,
Clark T. Holdsworth,
Danielle J. McCullough,
Bradley J. Behnke,
Timothy I. Musch,
David C. Poole
Publication year - 2012
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00151.2012
Subject(s) - nitric oxide , sodium nitroprusside , skeletal muscle , endocrinology , medicine , physical exercise , chemistry , treadmill
Exercise training induces multiple adaptations within skeletal muscle that may improve local O(2) delivery-utilization matching (i.e., Po(2)mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po(2)mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min, -14% grade) groups. Po(2)mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and N(G)-nitro-L-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (Vo(2 peak)) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml · kg(-1) · min(-1), respectively; P < 0.05). Exercise-trained rats had significantly slower Po(2)mv fall throughout contractions (τ(1); time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ(1) to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ(1) between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po(2)mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom